Numerical Mathematics ? ? ( 199 ? ) , ? { ? Highly Stable ParallelRunge - Kutta

نویسنده

  • Claus Bendtsen
چکیده

The construction of stiiy accurate and B-stable multi-implicit Runge-Kutta methods for parallel implementation is discussed. A fth and a seventh order method is constructed and a promising numerical comparison with the eecient Radau5 code of E. Hairer and G. Wanner is conducted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lyapunov exponents based stability theory for ODE initial value problem solvers

In this paper we consider the stability of variable step-size Runge-Kutta methods approximating bounded, stable, and time-dependent solutions of ordinary differential equation initial value problems. We use Lyapunov exponent theory to determine conditions on the maximum allowable step-size that guarantees the numerical solution of an asymptotically decaying time-dependent linear problem also de...

متن کامل

A Class of an Implicit Stage-two Rational Runge-Kutta Method for Solution of Ordinary Differential Equations

In this paper, we derived an implicit stage – two Rational Runge – Kutta method of order Two for solution of ordinary differential equation. The stability analysis of the method shows that our method is A-Stable. The numerical results of the implementation of the scheme on some existing methods which have solved the set of problems. Mathematics Subject Classification: 65L05, 65L20

متن کامل

Numerical solution of KdV-KdV systems of Boussinesq equations: I. The numerical scheme and generalized solitary waves

Considered here is a Boussinesq system of equations from surface water wave theory. The particular system is one of a class of equations derived and analyzed in recent studies. After a brief review of theoretical aspects of this system, attention is turned to numerical methods for the approximation of its solutions with appropriate initial and boundary conditions. Because the system has a spati...

متن کامل

A New Family of Phase-Fitted and Amplification-Fitted Runge-Kutta Type Methods for Oscillators

In order to solve initial value problems of differential equations with oscillatory solutions, this paper improves traditional Runge-Kutta RK methods by introducing frequency-depending weights in the update. New practical RK integrators are obtained with the phase-fitting and amplification-fitting conditions and algebraic order conditions. Two of the new methods have updates that are also phase...

متن کامل

Optimal Implicit Strong Stability Preserving Runge–Kutta Methods

Strong stability preserving (SSP) time discretizations were developed for use with the spatial discretization of partial differential equations that are strongly stable under forward Euler time integration. SSP methods preserve convex boundedness and contractivity properties satisfied by forward Euler, under a modified time-step restriction. We turn to implicit Runge–Kutta methods to alleviate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996